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Abstract

By means of the lattice-Boltzmann (LB) method, the mesoscaled structure of ferrofluids consisting of magnetic nano-

particles and a carrier fluid as well as some surfactant is investigated. The ferrofluid is a complicated system and its

morphology is affected by a number of internal and external forces including gravitational force, Brownian force,

van der Waals attraction potential, and dipole–dipole interaction potential. All these factors are included in the lat-

tice-Boltzmann model. The distribution of suspended magnetic nanoparticles and morphology of the ferrofluid are sim-

ulated in both cases of the absence and the presence of an external magnetic field. The effects of the dipole–dipole

interaction energy and the thermal energy on the aggregation structures of the magnetic nanoparticles are discussed.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Ferrofluids are composed of magnetic nanoparticles

(3–15 nm) and carrier fluid. Such ultrafine particles

may be coated by a suitable surfactant (activator or dis-

persant) to keep a stable suspension state and they can

be treated as particles of single magnetic domain. Ferro-

fluids exert some unique performances under the influ-

ence of external magnetic fields, i.e. an applied

magnetic field can be used to control physical and flow-

ing properties of the ferrofluid. Ferrofluids behave as a

smart or functional fluid and has been finding more

and more applications in a variety of fields such as elec-

tronic packing, mechanical engineering, aerospace, bio-

engineering, and thermal engineering [1–4]. The

distribution structure of the suspended nanoparticles

remarkably affects the transport properties and heat

transfer characteristic of the ferrofluid. With respect to
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the effect of an external magnetic field, such properties

of the ferrofluid will be strongly anisotropic, which

means that by means of an external magnetic field one

can make flow and energy transport processes of the fer-

rofluid controllable.

Since the ferrofluid is a complicated ferromagnetic

colloidal system, the suspended magnetic nanoparticles

experience actions from a number of forces such as grav-

itational force, Brownian force, Stokes drag force, van

der Waals attraction potential, and dipole–dipole inter-

action potential in the presence of an external magnetic

field. All these acting forces and potentials dominate

behavior and structure of the ferrofluid. To get insights

into the morphology and performance of the ferrofluid,

it is necessary to investigate its microstructure and the

relevant affecting factors. The main method of investi-

gating the microstructure of the ferrofluid is Brownian

dynamics and molecular dynamics simulation [5,6].

These publications simulated the cluster aggregation of

the particles and the structure of the ferrofluid by focus-

ing attention on each particle and considering some

forces (or potentials) acting on the particle. Obviously,
ed.
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Nomenclature

a particle radius, m

dp particle diameter, m

kB Boltzmann constant, J/K

m magnetic dipole moment of single particle,

A m2

Md bulk magnetization of the material, A/m

N/V number density of the particles

T absolute temperature, K

x Lorentz number, x ¼ 1
3

l0 vacuum permeability, l0 = 4p · 10�7 H/m

l fluid viscosity, Pa s

g relaxation time
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such a method is time consuming and is limited by a fi-

nite number of the suspended particles. The lattice-

Boltzmann method originating from the Boltzmann

equation became popular over the past few years [7]. It

bridges the gap between the microscopic world and the

macroscopic phenomenology and provides a possible

approach for simulating flow and energy transport pro-

cesses of a flow system at the mesoscaled level without

particle limitation. As regards the multiscaled simula-

tion algorithm for some system, the lattice-Boltzmann

method is an intermediate between the molecular

dynamics simulation for each microparticle and the

Navier–Stokes equations for macroscaled simulation. It

simulates fluid motion and energy transport by follow-

ing the evolution of a prescribed Boltzmann equation in-

stead of solving the Navier–Stokes equations. One of the

important advantages of this method is that microscopic

physical interactions among the fluid particles can be

conveniently incorporated into the model. This method

has been found recent successes in a lot of fluid dynamic

problems, including flow in porous media [8], thermal

two-phase flow [9] and diffusion in multicomponent flu-

ids [10]. Sofonea and Frueh [11] proposed a lattice-

Boltzmann model to investigate the competition relation

between surface tension and dipolar interaction in mag-

netic fluids. By taking into account the effects of several

forces and potentials acting on the suspended nanopar-

ticles, this method has recently been introduced to sim-

ulate nanoparticle behavior in nanofluids [12].

From the point of microscopic view, there exist a

number of forces and potentials acting on ferrofluids,

for example, gravitational force, Brownian force, van

der Waals attraction potential, magnetic field gradients,

and dipole–dipole interaction potential. Some of them

may bring magnetic nanoparticles together and form

clusters, but the others may make nanoparticles move

apart. It is these internal and external forces that affect

and control the morphology of the ferrofluid and make

the fluid have some unique features. In this paper, we

apply the lattice-Boltzmann method to simulate the meso-

scaled morphology of the ferrofluid by accounting for

the effects of the acting forces and potentials on the fer-

rofluid structure, especially the effects of the magnetic di-

pole–dipole interaction energy and the kinetic energy.

The paper is organized in the following way. In Section
2, some features and magnetization property of the ferro-

fluid are analyzed. The LB model for a multiple-compo-

nent system is briefly introduced in Section 3. Section 4 is

contributed to description of the interparticle potentials,

Stokes drag force, Brownian force, and gravitational

force are. Finally, some simulation results of a ferrofluid

system with homogeneous ferromagnetic nanoparticles

under the influence of all these forces are presented.
2. Magnetic features and magnetization property

The ferromagnetic nanoparticles suspended in the

liquid carrier can generally be considered as a single

magnetic domain because of their ultrafine sizes. The

macroscopic features of the ferrofluid depend not only

upon the properties of single suspended particles but

also on the interactions among these particles. In the

presence of an external magnetic field, the ferrofluid will

be magnetized in the direction of the field and may easily

approach saturation magnetization. Once the external

field is removed, the ferrofluid magnetization will imme-

diately vanish with a randomly oriented domain and

show no macroscaled magnetism. It is for this reason

that the ferrofluid is generally considered as being super-

paramagnetic. Such magnetization of the ferrofluid is re-

lated with the arrangement structure of the suspended

magnetic nanoparticles. The external field forces attract

the magnetic nanoparticles in a regular alignment, but

the Brownian force always puts the nanoparticles in ran-

dom motion and tries to keep them in an irregular struc-

ture. The external field will align the magnetic moment

of the suspended particles along the field and lead to

solid particle-carrier liquid separation. Among all the

forces acting on the ferrofluid, the dipole–dipole interac-

tion potential and the Brownian force are the two most

important external factors of affecting the microstruc-

ture and magnetization process of the ferrofluid. In the

case when an external magnetic field exists, the two main

parameters of describing the features and performances

of the ferrofluid are the volume fraction / of the sus-

pended magnetic nanoparticles and the ratio k of the

dipole–dipole interaction energy of two contacting parti-

cles to the thermal energy kBT [5]. These two dimension-

less parameters are given as follows:
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/ ¼ N
V

pd3
p

6
ð1Þ

k ¼ m2

4pl0kBTd
3
p

ð2Þ

With respect to the fact that the suspended magnetic

nanoparticles may aggregate under the influences of all

the acting forces or potentials and there may exist some

particle clusters, the conception of magnetic aggregation

is put forward to deal with the interaction between two

adjacent clusters or between the particles located in two

adjacent lattices. For this purpose, the magnetic dipole

moment of a cluster aggregation can also be considered

as its magnetization and is treated with Weiss� theory
[13]. A single-domain nanoparticle is subjected to an

effective field instead of the applied field:

H e ¼ H þ H inter ð3Þ

where Hinter = xM, the Lorentz value x is equal to 1/3,

H is the applied field, and M is the magnetization of

cluster aggregation. Here Hinter is introduced to treat

the nanoparticles distributed on a lattice as a cluster.

In ideal conditions, the cluster aggregation possesses

the saturation magnetization as

M sat ¼ l0M s;bV ð4Þ

where Ms,b denotes the bulk saturation magnetization of

the material, and V is the volume of nanoparticle

aggregation.

According to the terms of the Langevin function

L(a) = coth(a) � 1/a [5], one can obtain

M ¼ M satLðaÞ ð5Þ

where a = mHe/kBT.

Since the relation among expressions (3)–(5) is non-

linear, expression (5) is handled with Taylor�s expansion
near the point M = Msat by ignoring the o[(M � Msat)]

term. Thus, the magnetic dipole moment of the nano-

particle aggregation in a lattice is calculated.

Thus, the ratio of dipole–dipole interaction energy of

two contacting aggregation cluster to the thermal energy

kBT is similarly defined as:

k0 ¼ M2

4pl0D
3kBT

ð6Þ

where D is the equivalent diameter of the magnetic

aggregation cluster. Here the aggregation cluster is con-

sidered as a sphere for the sake of simplicity.
3. Lattice-Boltzmann model form multicomponent system

Consider the motion of particles of S different com-

ponents in a regular lattice in D-dimensional space.

The population of the particles of the rth component
with the velocity ei at lattice site x and time t is denoted

by f r
i ðx; tÞ, where {ei; i = 1, . . . ,b} is the set of vectors

pointing from x to its neighboring sites. In order to sim-

ulation the two-dimensional morphology and perfor-

mance of the ferrofluid, one gets S = 2 and b = 8.

The evolution of f r
i ðx; tÞ for a multicomponent sys-

tem is described by the well-known lattice-Boltzmann

equations:

f r
i ðxþ eiDt; t þ DtÞ � f r

i ðx; tÞ

¼ � 1

sr
ðf r

i ðx; tÞ � f req
i ðx; tÞÞ; r ¼ 1; . . . ; S ð7Þ

where sr = gr/Dt is the dimensionless collision–relaxa-

tion time constant of the rth component. On the right

side, the Bhatnagar–Gross–Krook (BGK) single-relaxa-

tion time collision term [14] is adopted and the equilib-

rium distribution functions could be express as follows:

f r;eq
i ¼ qrwi 1þ 3

c2
ðei � urÞ þ

9

2c4
ðei � urÞ2 �

3

2c2
ur � ur

� �
ð8Þ

wi ¼
4=9 i ¼ 0

1=9 i ¼ 1; 2; 3; 4

1=36 i ¼ 5; 6; 7; 8

8><
>: ð9Þ

The equilibrium distribution function f r;eq
i ðx; tÞ is se-

lected to ensure that each of the components obeys the

macroscopic Navier–Stokes equations. The following

expressions describe the macroscaled quantities such as

the mass density (or the number density) and the veloc-

ity of the rth component and the microscaled quantities

defined on the basis of lattice sizes:

qr ¼
X
i

f r
i ðx; tÞ ð10Þ

qrurðx; tÞ ¼
X
i

f r
i ðx; tÞeiðx; tÞ ð11Þ

These expressions are derived under the assumptions

that there exist no internal or external forces and poten-

tials acting on the particles, so that the total momentum

of the particles of all components should be conserved

by the scattering term (i.e. the collision term) at each lat-

tice. For such a case, Shan and Doolen [14] assumed that

the equilibrium velocity ueqr of each component is equal

to a common velocity ueq

ueq ¼
X

r

qrur

sr

,X
r

qr

sr
ð12Þ

For the actual multiphase fluid system such as a mag-

netic fluid, there exist some forces and/potentials acting

on the particles. The impacts and influences from these

forces and potentials cause an extra momentum change.

As mentioned in a previous paper [12], the momentum

supplement method and the modified collision-function
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method are two main approaches to deal with the

momentum variation induced by the forces and

potentials. The first is the commonest and the most fre-

quently used method by introducing an auxiliary

momentum change srFrDt of the rth component to take

the vector sum Fr of all the acting forces and potentials

into account. Thus, the equilibrium velocity is modified

as

ðueqr Þ� ¼ ueq þ srFrDt=mr ð13Þ

where mr is the mass density of the magnetic aggrega-

tion of the rth component.

It has been proven that formula (10) leads to a veloc-

ity field that is a solution of the Navier–Stokes equation.

Here the kinetic viscosity mr of the rth component and

the mean kinetic viscosity of the ferrofluid are respec-

tively given as

mr ¼ 2sr � 1

6

ðDxÞ2

Dt
ð14Þ

m ¼
2
P
r

ursr � 1

6

ðDxÞ2

Dt
ð15Þ

where the concentration of each component

ur ¼ qr=
P

rqr. Obviously, both expression (14) and

(15) determine the relation between the kinetic viscosity,

the relaxation constant, lattice length, and time step. For

a real fluid system with a known kinetic viscosity, deter-

mination of the other parameters is confined by these

expressions.
4. Forces and potentials in a ferrofluid

Among all the possible factors, as mentioned before,

the mutual interaction among single particles and the ac-

tion due to the external fields may be most important in

controlling the phase behavior and morphology of the

ferrofluid. Such actions can be described by a series of

forces and potentials. Although the forces and potentials

are considerably complicated, they can be sorted into

two types: the continuous action and the transient im-

pact. The gravitational force, Stokes drag force, the

buoyancy, the magnetic force, and van der Waals attrac-

tive force belong to the first category and the Brownian

force is of the second.

4.1. Interaction potentials

The ferrofluid structure is greatly affected by a num-

ber of acting forces and potentials. For the ferrofluid,

the London-van der Waals attraction and the dipole–

dipole interaction exist between the magnetic colloids.

Generally, the van der Waals attraction potential be-

tween two adjacent spheres is expressed as [15]
V ¼ �A
6

2a2

L2 � 4a2
þ 2a2

L2
þ ln

L2 � 4a2

L2


 �
ð16Þ

where L is the distance between two adjacent particle

cores and A is the Hamaker constant (approximately

4 · 10�20 J for iron oxides in a solvent).

For two adjacent spheres of radius as and ap, Armin

et al. [16] directly gave an expression for the van der

Waals attraction force as follows:

Fw ¼� Að16RÞ3

3ðap þ asÞ
	 s

ð1þRÞ2½s2ð1þRÞ2 � 4ð1�RÞ2�2

" #
er

ð17Þ

where s ¼ 2ðLþapþasÞ
apþas

, R = as/ap.

The dipolar interactions among the suspended mag-

netic nanoparticles and/or agglomeration clusters imply

the interaction of fields produced by two magnetic par-

ticles and/or aggregations themselves and should be

taken into account in the presence of an external mag-

netic field. Generally, the magnetic interaction between

two magnetic nanoparticles and/or aggregation clusters

with magnetic dipole moments M and M 0 at a distance

r is given as

V MM 0 ¼ �M0 �H

¼ 1

4pl0

M �M0

r3
� 3

r5
ðM � rÞðM0 � rÞ

� �
ð18Þ

For the uniform external magnetic field, the magnetic

force induced by the external field is equal to zero. How-

ever, there still is a force acting on each particle as a re-

sult of the sum of the magnetic fields of all the other

particles in the surrounding carrier liquid [17]. This

internal force induced by such magnetic dipole moments

potential is expressed as

FMM0 ¼ �rV MM 0

¼ � 3

4l0pr4
½ðM �M0Þ � 3ðM � r0ÞðM0 � r0Þ�r0 ð19Þ

where r0 denotes a unit vector.

These potentials are originally three dimensional. For

the sake of simplicity, one may assume that they are

applicable to the two-dimensional problem.

4.2. Other internal forces and external force

The other internal and external forces may include

the Brownian force, drag force, gravitational force and

buoyant force. All these actions also lead to momentum

change inside the system.

Stokes� law is applied to describe the drag force due

to the slip velocity difference Du between the aggregation

cluster and the carrier fluid as follows:

FD ¼ �6plaDu ð20Þ
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Since the lattice-Boltzmann method assumes that the

particles of the fluid are distributed in all lattices and

the particle distribution in a given lattice possesses the

same features, one may equate this particle distribution

in the lattice as a fictitious particle while handling the

drag force.

The sum of the buoyant force and the gravitational

force is simply expressed as

FH ¼ 4

3
pa3gDq ð21Þ

As for the irregular Brownian force, it can be considered

as the comprehensive effect of the actions exerted by the

surrounding fluid molecules. The Brownian force will

lead to abrupt alteration of both velocity magnitude

and direction of suspended particles or clusters. This

random uncorrelated force statistically satisfies

hFiðtÞi ¼ 0 ð22Þ

hFiðtÞFjðt0Þi ¼ Cdijdðt � t0Þ ð23Þ

where i and j denote the components in the Cartesian

coordinates, d(t � t 0) is the Dirac function, C is a

constant.
Fig. 1. Distribution of the particles d in the
Since Brownian motion is generally simulated as a

Gaussian white-noise process, the algorithm for simulat-

ing the Brownian force is similar to that for generating a

white noise process modeled as a Gaussian white noise

process [18],

FB ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12palkBT

Dt

r
ð24Þ

where the parameter 1 is a Gaussian random number

with zero mean and unit variance.

The total force as F acting on the ferrofluid system is

defined as the vector sum of all these forces, so that the

extra momentum change induced by these internal and

external forces is obtained as DP = FsrDt. Thus, the

new equilibrium velocity is determined by the modifica-

tion expression (13).
5. Results and discussion

The above-derived model can be used to investigate

the structure of the magnetic particles suspended in a

carrier liquid and simulate the morphology of the ferro-

fluid. The two-dimensional numerical simulations are
absence of an external magnetic field.
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performed in a region consisting of 102 · 102 lattice

grids, with periodic boundary conditions imposed on

the x-axis and y-axis. Additional lattice sites are re-

quired at each end of the simulation region to implement

the boundary conditions. The nominal diameter of the

suspended Fe3O4 nanoparticles is 10 nm and the volume

fraction of the solid magnetic particles is 10%. Since the

time step Dt is set to be 10�7 s and sr is set to be equal to

0.8 which is assumed to be the same for both compo-

nents to get the correct statistical result, the spatial lat-

tice length is determined with expression (14) or (15).

It is assumed that the magnetic nanoparticles are evenly

distributed all the lattices at the initial state.

Fig. 1 shows the distribution structures of the mag-

netic nanoparticles suspended in the carrier liquid whose

the temperature is 298 K in the absence of an external

magnetic field, in which the vertical coordinate on the

right-hand side denotes the number density of the parti-

cles. It can be found that when the macroscopic flow

velocity of the ferrofluid is zero, the nanoparticles tend

to flocculate and the aggregation becomes more evident

as the time increases. The Brownian force becomes the

primary reason for keeping the suspended nanoparticles

in random motion that provides a large probability of

nanoparticle collision. Due to the sophisticated actions
Fig. 2. Distribution of the particles und
of various forces and potentials the suspended nanopar-

ticles may tend to aggregate or flocculate, and then

aggregation clusters may form. The larger sizes of nano-

particle clusters accelerate the sedimentation process. On

the other hand, the thermal kinetic motion will break

stable structures of the clusters, so that the clusters will

be in an unstable state and aggregation and breakup of

the clusters will coexist, which makes the distribution

structure of the suspended nanoparticles more irregular.

Another example of the magnetic nanoparticle distri-

bution in the presence of a perpendicular uniform field

of 6 · 104 A m�1 is illustrated in Fig. 2 with the param-

eter k 0 = 4970. Compared with Fig. 1, it is evident that

the distribution structure of the suspended magnetic

nanoparticles under the effect of the external magnetic

field quite differs from that corresponding to no applied

magnetic field. Long chainlike structures of the magnetic

nanoparticles along the direction of the applied mag-

netic field form and such structures become more stable

and clearer with increasing time. This phenomenon can

be explained by the mechanism that the magnetic mo-

ment of the suspended magnetic nanoparticles quickly

turns and remains identical to the direction of the ap-

plied field. Interaction potentials of these particles make

the particles form chainlike structures along the mag-
er a uniform perpendicular field.
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netic field. The Brownian motion may break larger clus-

ters into smaller segments and tends to make the parti-

cles in irregular arrangements rather than along the

direction of the external field, which will reduce the mag-

netization ability of the ferrofluid.

It is expected that in the presence of an external mag-

netic field, the dipole–dipole interaction energy and the

thermal energy are two of the dominant factors for con-

trolling the morphology and magnetization ability of the

ferrofluid. As mentioned before, the magnitude of

parameter k 0 indicates the comprehensive effect of both

these two types of energy on the microscale structure

of the ferrofluid. For example, consider the case that

the diameter of a magnetic aggregation cluster is

100 nm, the bulk saturation magnetization of the mate-

rial is 4.8 · 105 A/m, and the fluid temperature is 298 K,

one can get k 0 = 1530. A higher value of k 0 means a

stronger effect of the dipole–dipole magnetic energy.

Note that the parameter k 0 increases with the magnetiza-

tion intensity and decreases with the fluid temperature.

Fig. 3 provides some comparison examples about the

distribution structures of the suspended magnetic nano-

particles corresponding to different values of the para-

meter k 0 after the same timestep (timestep = 1000). As

shown, the morphology of the ferrofluid system varies
Fig. 3. Distribution of the particles with an applied unifo
from the random distribution of the suspended magnetic

nanoparticles to short clusters or string-like alignments

along the direction of the external applied magnetic field

with increasing k 0. According to numerical simulations,

the dependence of magnetic nanoparticle distribution

on an external magnetic field is rather weak if

k 0 < 4029. In such cases, the Brownian force due to the

thermal impulse plays a preponderant role on the

arrangement structure of the suspended magnetic nano-

particles as well as the distribution of the magnetic mo-

ment. But if k 0 P 4577, the nanoparticles appear in a

chainlike arrangement along the external field and

short-chain aggregation clusters emerge.

The effects of a horizontal magnetic field on the dis-

tribution structures of the suspended magnetic nanopar-

ticles are illustrated in Fig. 4, in which the other

parameters remain the same as those in Fig. 3. Com-

pared with the simulation results corresponding to the

vertical magnetic field, the horizontally applied magnetic

field leads to a quite different morphology of the ferro-

fluid. Of course, the distribution structures of the sus-

pended nanoparticles depend upon the integrated effect

of all the forces and potentials acting on the ferrofluid

system. Such effects are distinctly indicated by two

extreme cases (as shown in Fig. 4): one is that the
rm perpendicular field corresponding to different k 0.
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dipole–dipole interaction among the magnetic nanopar-

ticles is ignored (k 0 = 0) and the other is that the effect of

the Brownian force is neglected (k 0 =1). In the first

case, the Brownian force may play a dominant role in the

distribution of the nanoparticles, so that the morphol-

ogy appears as a random state. As the value of parame-

ter k 0 increases, the effect of the external magnetic field

through the dipole–dipole interaction becomes more

important. When k 0 = 1 and the Brownian force is

small enough to be neglected, the magnetic moments

of the suspended magnetic nanoparticles turn to the

direction of the applied magnetic field and the nanopar-

ticles horizontally appear in a chainlike arrangement

along the external horizontal magnetic field. The inter-

mediate states between these extreme cases reveal the

competitive and opposite functions of the Brownian

force and the applied magnetic field. The Brownian

force always promotes the random motion of the sus-

pended nanoparticles and tries to prohibit the nanopar-

ticles to be aligned in the external magnetic field, so it

will reduce the magnetization ability of the ferrofluid.

It should be mentioned that the D2Q9 model has

been introduced for two-dimensional simulation of the

morphology of a magnetic fluid. In principle, the

above-described approach can directly be extended to
three-dimensional simulation. For this purpose, the suit-

able density distribution functions of artificial particles

corresponding to the three-dimensional structures such

as the D3Q15 or D3Q19 model should be substituted

for the D2Q9 model and the relevant variations involved

in relations between the microscopic parameters and the

macroscopic ones should be taken into account.
6. Conclusions

In this paper, a lattice-Boltzmann model for simulat-

ing the distribution structure of the suspended magnetic

nanoparticles and the morphology of the ferrofluid has

been developed. Some possible acting forces and poten-

tials such as the gravitational force, the Stokes drag

force, the Brownian force, van der Waals attraction po-

tential, and the dipole–dipole interaction potential have

been incorporated into the model. The momentum sup-

plement method has been used to deal with the momen-

tum variation induced by the vector sum of all these

forces and potentials by introducing an auxiliary momen-

tum change of the rth component. By means of the

proposed model the structure of the ferrofluid at the

mesoscale level can be simulated without the limitation
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of nanoparticle number, compared with the direct

numerical simulation method of a flow system.

Several examples have been computed and the

numerical simulation results have revealed the effects

of the forces and potentials on the distribution micro-

structure of the magnetic nanoparticles. Among all the

forces and potentials the thermal fluctuation force and

the external allied magnetic field are two dominant fac-

tors of controlling the morphology of the ferrofluid.

Furthermore, they exert quite opposite effects on the

aggregation clusters structures and the magnetization

ability of the ferrofluid. The applied magnetic field en-

hances the tendency of coalignment with the field direc-

tion and aggregation of the suspended magnetic

nanoparticles, but the Brownian force keeps the nano-

particles in random motion and suppresses the effect of

the external magnetic field.
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